0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇒)
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 IDP
↳15 IDPNonInfProof (⇒)
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
public class AckermannR {
public static int ack(int m, int n) {
if (m <= 0) return n + 1;
else if (n <= 0) return ack(m - 1,1);
else return ack(m - 1,ack(m,n - 1));
}
public static void main(String[] args) {
Random.args = args;
ack(Random.random(),Random.random());
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (index >= args.length)
return 0;
String string = args[index];
index++;
return string.length();
}
}
Generated 33 rules for P and 18 rules for R.
Combined rules. Obtained 4 rules for P and 5 rules for R.
Filtered ground terms:
450_0_ack_GT(x1, x2, x3, x4) → 450_0_ack_GT(x2, x3, x4)
710_0_ack_Return(x1, x2) → 710_0_ack_Return(x2)
629_0_ack_Return(x1, x2, x3, x4) → 629_0_ack_Return(x2, x4)
Cond_450_0_ack_GT1(x1, x2, x3, x4, x5) → Cond_450_0_ack_GT1(x1, x3, x4, x5)
612_1_ack_InvokeMethod(x1, x2, x3, x4, x5) → 612_1_ack_InvokeMethod(x1, x2, x4)
Cond_450_0_ack_GT(x1, x2, x3, x4, x5) → Cond_450_0_ack_GT(x1, x3, x4, x5)
502_0_ack_Return(x1, x2, x3, x4) → 502_0_ack_Return(x3, x4)
Filtered duplicate args:
450_0_ack_GT(x1, x2, x3) → 450_0_ack_GT(x2, x3)
Cond_450_0_ack_GT1(x1, x2, x3, x4) → Cond_450_0_ack_GT1(x1, x3, x4)
Cond_450_0_ack_GT(x1, x2, x3, x4) → Cond_450_0_ack_GT(x1, x3, x4)
Filtered unneeded arguments:
612_1_ack_InvokeMethod(x1, x2, x3) → 612_1_ack_InvokeMethod(x1, x3)
Combined rules. Obtained 4 rules for P and 5 rules for R.
Finished conversion. Obtained 4 rules for P and 5 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((1 →* 0)∧(x0[1] - 1 →* x0[0]))
(1) -> (2), if ((1 →* x1[2])∧(x0[1] - 1 →* x0[2]))
(2) -> (3), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
(3) -> (5), if ((450_0_ack_GT(x1[3] - 1, x0[3]) →* 629_0_ack_Return(x0[5], x2[5]))∧(x0[3] - 1 →* x3[5])∧(x0[3] →* x0[5])∧(x1[3] - 1 →* 0))
(3) -> (6), if ((450_0_ack_GT(x1[3] - 1, x0[3]) →* 710_0_ack_Return(x0[6]))∧(x0[3] - 1 →* x1[6])∧(x0[3] →* x2[6])∧(x1[3] - 1 →* x3[6]))
(4) -> (0), if ((x1[4] - 1 →* 0)∧(x0[4] →* x0[0]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(5) -> (0), if ((x2[5] →* 0)∧(x3[5] →* x0[0]))
(5) -> (2), if ((x2[5] →* x1[2])∧(x3[5] →* x0[2]))
(6) -> (0), if ((x0[6] →* 0)∧(x1[6] →* x0[0]))
(6) -> (2), if ((x0[6] →* x1[2])∧(x1[6] →* x0[2]))
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 450_0_ACK_GT(0, x0[0])≥NonInfC∧450_0_ACK_GT(0, x0[0])≥COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])∧(UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 450_0_ACK_GT(0, x0[0])≥NonInfC∧450_0_ACK_GT(0, x0[0])≥COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])∧(UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_39 + (-1)Bound*bni_39] ≥ 0∧[(-1)bso_40] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_39 + (-1)Bound*bni_39] ≥ 0∧[(-1)bso_40] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_39 + (-1)Bound*bni_39] ≥ 0∧[(-1)bso_40] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧0 ≥ 0∧[(-1)bni_39 + (-1)Bound*bni_39] ≥ 0∧0 ≥ 0∧[(-1)bso_40] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧1=0∧-(x0[1], 1)=x0[0]1 ⇒ COND_450_0_ACK_GT(TRUE, 0, x0[1])≥NonInfC∧COND_450_0_ACK_GT(TRUE, 0, x0[1])≥450_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥))
(8) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧1=x1[2]∧-(x0[1], 1)=x0[2] ⇒ COND_450_0_ACK_GT(TRUE, 0, x0[1])≥NonInfC∧COND_450_0_ACK_GT(TRUE, 0, x0[1])≥450_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥))
(9) (>(x0[0], 0)=TRUE ⇒ COND_450_0_ACK_GT(TRUE, 0, x0[0])≥NonInfC∧COND_450_0_ACK_GT(TRUE, 0, x0[0])≥450_0_ACK_GT(1, -(x0[0], 1))∧(UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥))
(10) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] ≥ 0∧[(-1)bso_42] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] ≥ 0∧[(-1)bso_42] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] ≥ 0∧[(-1)bso_42] ≥ 0)
(13) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧0 ≥ 0∧[(-1)bni_41 + (-1)Bound*bni_41] ≥ 0∧0 ≥ 0∧[(-1)bso_42] ≥ 0)
(14) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(15) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(16) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧[(-1)bso_44] ≥ 0)
(17) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧[(-1)bso_44] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧[(-1)bso_44] ≥ 0)
(19) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_44] ≥ 0)
(20) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(21) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧[(-1)bso_44] ≥ 0)
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧[(-1)bso_44] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧[(-1)bso_44] ≥ 0)
(25) (0 ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_43 + (-1)Bound*bni_43] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_44] ≥ 0)
(26) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧450_0_ack_GT(-(x1[3], 1), x0[3])=629_0_ack_Return(x0[5], x2[5])∧-(x0[3], 1)=x3[5]∧x0[3]=x0[5]∧-(x1[3], 1)=0 ⇒ COND_450_0_ACK_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[3], x0[3])≥680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))∧(UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(27) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧450_0_ack_GT(-(x1[2], 1), x0[2])=629_0_ack_Return(x0[2], x2[5])∧-(x1[2], 1)=0 ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[2], 1), x0[2]), -(x0[2], 1), x0[2], -(x1[2], 1))∧(UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(28) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧[1 + (-1)bso_46] + [3]x0[2] ≥ 0)
(29) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧[1 + (-1)bso_46] + [3]x0[2] ≥ 0)
(30) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧[1 + (-1)bso_46] + [3]x0[2] ≥ 0)
(31) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧0 ≥ 0∧[1 + (-1)bso_46] ≥ 0∧[1] ≥ 0)
(32) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧450_0_ack_GT(-(x1[3], 1), x0[3])=710_0_ack_Return(x0[6])∧-(x0[3], 1)=x1[6]∧x0[3]=x2[6]∧-(x1[3], 1)=x3[6] ⇒ COND_450_0_ACK_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[3], x0[3])≥680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))∧(UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(33) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧450_0_ack_GT(-(x1[2], 1), x0[2])=710_0_ack_Return(x0[6]) ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[2], 1), x0[2]), -(x0[2], 1), x0[2], -(x1[2], 1))∧(UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(34) (0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧[1 + (-1)bso_46] + [3]x0[2] ≥ 0)
(35) (0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧[1 + (-1)bso_46] + [3]x0[2] ≥ 0)
(36) (0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧[1 + (-1)bso_46] + [3]x0[2] ≥ 0)
(37) (0 ≥ 0 ⇒ (UIncreasing(680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_45 + (-1)Bound*bni_45] ≥ 0∧0 ≥ 0∧[1 + (-1)bso_46] ≥ 0∧[1] ≥ 0)
(38) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=0∧x0[4]=x0[0] ⇒ COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥450_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(39) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧-(x1[2], 1)=0 ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥450_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(40) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧[(-1)bso_48] ≥ 0)
(41) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧[(-1)bso_48] ≥ 0)
(42) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧[(-1)bso_48] ≥ 0)
(43) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_48] ≥ 0)
(44) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[2]1∧x0[4]=x0[2]1 ⇒ COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥450_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(45) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥450_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(46) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧[(-1)bso_48] ≥ 0)
(47) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧[(-1)bso_48] ≥ 0)
(48) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧[(-1)bso_48] ≥ 0)
(49) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_47 + (-1)Bound*bni_47] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_48] ≥ 0)
(50) (450_0_ack_GT(-(x1[3], 1), x0[3])=629_0_ack_Return(x0[5], x2[5])∧-(x0[3], 1)=x3[5]∧x0[3]=x0[5]∧-(x1[3], 1)=0∧x2[5]=0∧x3[5]=x0[0] ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[5], x2[5]), x3[5], x0[5], 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[5], x2[5]), x3[5], x0[5], 0)≥450_0_ACK_GT(x2[5], x3[5])∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(51) (-(x1[3], 1)=x0∧450_0_ack_GT(x0, x0[3])=629_0_ack_Return(x0[3], 0)∧-(x1[3], 1)=0 ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[3], 0), -(x0[3], 1), x0[3], 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[3], 0), -(x0[3], 1), x0[3], 0)≥450_0_ACK_GT(0, -(x0[3], 1))∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(52) (Cond_450_0_ack_GT(>=(x1, 0), x1, 0)=629_0_ack_Return(0, 0)∧-(x1[3], 1)=x1∧-(x1[3], 1)=0 ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, 0), -(0, 1), 0, 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, 0), -(0, 1), 0, 0)≥450_0_ACK_GT(0, -(0, 1))∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(53) (Cond_450_0_ack_GT(>=(-(x1[3], 1), 0), -(x1[3], 1), 0)=629_0_ack_Return(0, 0)∧-(x1[3], 1)=0 ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, 0), -(0, 1), 0, 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, 0), -(0, 1), 0, 0)≥450_0_ACK_GT(0, -(0, 1))∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(54) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧[(-1)bso_50] ≥ 0)
(55) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧[(-1)bso_50] ≥ 0)
(56) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧[(-1)bso_50] ≥ 0)
(57) (450_0_ack_GT(-(x1[3], 1), x0[3])=629_0_ack_Return(x0[5], x2[5])∧-(x0[3], 1)=x3[5]∧x0[3]=x0[5]∧-(x1[3], 1)=0∧x2[5]=x1[2]∧x3[5]=x0[2] ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[5], x2[5]), x3[5], x0[5], 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[5], x2[5]), x3[5], x0[5], 0)≥450_0_ACK_GT(x2[5], x3[5])∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(58) (-(x1[3], 1)=x4∧450_0_ack_GT(x4, x0[3])=629_0_ack_Return(x0[3], x2[5])∧-(x1[3], 1)=0 ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[3], x2[5]), -(x0[3], 1), x0[3], 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[3], x2[5]), -(x0[3], 1), x0[3], 0)≥450_0_ACK_GT(x2[5], -(x0[3], 1))∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(59) (Cond_450_0_ack_GT(>=(x5, 0), x5, 0)=629_0_ack_Return(0, x2[5])∧-(x1[3], 1)=x5∧-(x1[3], 1)=0 ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, x2[5]), -(0, 1), 0, 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, x2[5]), -(0, 1), 0, 0)≥450_0_ACK_GT(x2[5], -(0, 1))∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(60) (Cond_450_0_ack_GT(>=(-(x1[3], 1), 0), -(x1[3], 1), 0)=629_0_ack_Return(0, x2[5])∧-(x1[3], 1)=0 ⇒ 680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, x2[5]), -(0, 1), 0, 0)≥NonInfC∧680_1_ACK_INVOKEMETHOD(629_0_ack_Return(0, x2[5]), -(0, 1), 0, 0)≥450_0_ACK_GT(x2[5], -(0, 1))∧(UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥))
(61) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧[(-1)bso_50] ≥ 0)
(62) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧[(-1)bso_50] ≥ 0)
(63) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧[(-1)bso_50] ≥ 0)
(64) (0 ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(x2[5], x3[5])), ≥)∧0 ≥ 0∧[(-1)bni_49 + (-1)Bound*bni_49] ≥ 0∧0 ≥ 0∧[(-1)bso_50] ≥ 0)
(65) (450_0_ack_GT(-(x1[3], 1), x0[3])=710_0_ack_Return(x0[6])∧-(x0[3], 1)=x1[6]∧x0[3]=x2[6]∧-(x1[3], 1)=x3[6]∧x0[6]=0∧x1[6]=x0[0] ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥450_0_ACK_GT(x0[6], x1[6])∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(66) (-(x1[3], 1)=x8∧450_0_ack_GT(x8, x0[3])=710_0_ack_Return(0) ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(0), -(x0[3], 1), x0[3], -(x1[3], 1))≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(0), -(x0[3], 1), x0[3], -(x1[3], 1))≥450_0_ACK_GT(0, -(x0[3], 1))∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(67) (Cond_450_0_ack_GT(>=(x9, 0), x9, 0)=710_0_ack_Return(0)∧-(x1[3], 1)=x9 ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(0), -(0, 1), 0, -(x1[3], 1))≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(0), -(0, 1), 0, -(x1[3], 1))≥450_0_ACK_GT(0, -(0, 1))∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(68) (Cond_450_0_ack_GT(>=(-(x1[3], 1), 0), -(x1[3], 1), 0)=710_0_ack_Return(0) ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(0), -(0, 1), 0, -(x1[3], 1))≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(0), -(0, 1), 0, -(x1[3], 1))≥450_0_ACK_GT(0, -(0, 1))∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(69) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧[(-1)bso_52] ≥ 0)
(70) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧[(-1)bso_52] ≥ 0)
(71) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧[(-1)bso_52] ≥ 0)
(72) (450_0_ack_GT(-(x1[3], 1), x0[3])=710_0_ack_Return(x0[6])∧-(x0[3], 1)=x1[6]∧x0[3]=x2[6]∧-(x1[3], 1)=x3[6]∧x0[6]=x1[2]∧x1[6]=x0[2] ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥450_0_ACK_GT(x0[6], x1[6])∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(73) (-(x1[3], 1)=x12∧450_0_ack_GT(x12, x0[3])=710_0_ack_Return(x0[6]) ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), -(x0[3], 1), x0[3], -(x1[3], 1))≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), -(x0[3], 1), x0[3], -(x1[3], 1))≥450_0_ACK_GT(x0[6], -(x0[3], 1))∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(74) (Cond_450_0_ack_GT(>=(x13, 0), x13, 0)=710_0_ack_Return(x0[6])∧-(x1[3], 1)=x13 ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), -(0, 1), 0, -(x1[3], 1))≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), -(0, 1), 0, -(x1[3], 1))≥450_0_ACK_GT(x0[6], -(0, 1))∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(75) (Cond_450_0_ack_GT(>=(-(x1[3], 1), 0), -(x1[3], 1), 0)=710_0_ack_Return(x0[6]) ⇒ 680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), -(0, 1), 0, -(x1[3], 1))≥NonInfC∧680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), -(0, 1), 0, -(x1[3], 1))≥450_0_ACK_GT(x0[6], -(0, 1))∧(UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥))
(76) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧[(-1)bso_52] ≥ 0)
(77) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧[(-1)bso_52] ≥ 0)
(78) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧[(-1)bso_52] ≥ 0)
(79) ((UIncreasing(450_0_ACK_GT(x0[6], x1[6])), ≥)∧0 ≥ 0∧[(-1)bni_51 + (-1)Bound*bni_51] ≥ 0∧0 ≥ 0∧[(-1)bso_52] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(450_0_ack_GT(x1, x2)) = [1] + [3]x2
POL(0) = 0
POL(Cond_450_0_ack_GT(x1, x2, x3)) = [2] + [2]x2
POL(>=(x1, x2)) = 0
POL(502_0_ack_Return(x1, x2)) = [3] + [3]x1
POL(+(x1, x2)) = 0
POL(1) = 0
POL(612_1_ack_InvokeMethod(x1, x2)) = 0
POL(629_0_ack_Return(x1, x2)) = 0
POL(710_0_ack_Return(x1)) = 0
POL(701_1_ack_InvokeMethod(x1, x2, x3)) = 0
POL(450_0_ACK_GT(x1, x2)) = [-1]
POL(COND_450_0_ACK_GT(x1, x2, x3)) = [-1] + [-1]x2
POL(>(x1, x2)) = 0
POL(-(x1, x2)) = 0
POL(COND_450_0_ACK_GT1(x1, x2, x3)) = [-1]
POL(&&(x1, x2)) = 0
POL(680_1_ACK_INVOKEMETHOD(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x2 + [-1]x1
COND_450_0_ACK_GT1(TRUE, x1[3], x0[3]) → 680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))
450_0_ACK_GT(0, x0[0]) → COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])
COND_450_0_ACK_GT(TRUE, 0, x0[1]) → 450_0_ACK_GT(1, -(x0[1], 1))
450_0_ACK_GT(x1[2], x0[2]) → COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_450_0_ACK_GT1(TRUE, x1[3], x0[3]) → 680_1_ACK_INVOKEMETHOD(450_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))
COND_450_0_ACK_GT1(TRUE, x1[4], x0[4]) → 450_0_ACK_GT(-(x1[4], 1), x0[4])
680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[5], x2[5]), x3[5], x0[5], 0) → 450_0_ACK_GT(x2[5], x3[5])
680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), x1[6], x2[6], x3[6]) → 450_0_ACK_GT(x0[6], x1[6])
450_0_ACK_GT(0, x0[0]) → COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])
COND_450_0_ACK_GT(TRUE, 0, x0[1]) → 450_0_ACK_GT(1, -(x0[1], 1))
450_0_ACK_GT(x1[2], x0[2]) → COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_450_0_ACK_GT1(TRUE, x1[4], x0[4]) → 450_0_ACK_GT(-(x1[4], 1), x0[4])
680_1_ACK_INVOKEMETHOD(629_0_ack_Return(x0[5], x2[5]), x3[5], x0[5], 0) → 450_0_ACK_GT(x2[5], x3[5])
680_1_ACK_INVOKEMETHOD(710_0_ack_Return(x0[6]), x1[6], x2[6], x3[6]) → 450_0_ACK_GT(x0[6], x1[6])
Cond_450_0_ack_GT(>=(x1, 0), x1, 0)1 → 450_0_ack_GT(x1, 0)1
502_0_ack_Return(x1, +(x1, 1))1 → Cond_450_0_ack_GT(TRUE, x1, 0)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((1 →* 0)∧(x0[1] - 1 →* x0[0]))
(4) -> (0), if ((x1[4] - 1 →* 0)∧(x0[4] →* x0[0]))
(5) -> (0), if ((x2[5] →* 0)∧(x3[5] →* x0[0]))
(6) -> (0), if ((x0[6] →* 0)∧(x1[6] →* x0[0]))
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (2), if ((1 →* x1[2])∧(x0[1] - 1 →* x0[2]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(5) -> (2), if ((x2[5] →* x1[2])∧(x3[5] →* x0[2]))
(6) -> (2), if ((x0[6] →* x1[2])∧(x1[6] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((1 →* 0)∧(x0[1] - 1 →* x0[0]))
(4) -> (0), if ((x1[4] - 1 →* 0)∧(x0[4] →* x0[0]))
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (2), if ((1 →* x1[2])∧(x0[1] - 1 →* x0[2]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((1 →* 0)∧(x0[1] - 1 →* x0[0]))
(4) -> (0), if ((x1[4] - 1 →* 0)∧(x0[4] →* x0[0]))
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (2), if ((1 →* x1[2])∧(x0[1] - 1 →* x0[2]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
(1) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=0∧x0[4]=x0[0] ⇒ COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥450_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(2) (-(x1[2], 1)=0∧>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥450_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(3) (x1[2] + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (x1[2] ≥ 0∧x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(8) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[2]1∧x0[4]=x0[2]1 ⇒ COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥450_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(9) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥450_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(15) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(16) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(17) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(18) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(19) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(20) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(21) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(22) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧1=0∧-(x0[1], 1)=x0[0]1 ⇒ COND_450_0_ACK_GT(TRUE, 0, x0[1])≥NonInfC∧COND_450_0_ACK_GT(TRUE, 0, x0[1])≥450_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥))
(23) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧1=x1[2]∧-(x0[1], 1)=x0[2] ⇒ COND_450_0_ACK_GT(TRUE, 0, x0[1])≥NonInfC∧COND_450_0_ACK_GT(TRUE, 0, x0[1])≥450_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥))
(24) (>(x0[0], 0)=TRUE ⇒ COND_450_0_ACK_GT(TRUE, 0, x0[0])≥NonInfC∧COND_450_0_ACK_GT(TRUE, 0, x0[0])≥450_0_ACK_GT(1, -(x0[0], 1))∧(UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥))
(25) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(26) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(27) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(28) (x0[0] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(29) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 450_0_ACK_GT(0, x0[0])≥NonInfC∧450_0_ACK_GT(0, x0[0])≥COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])∧(UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥))
(30) (>(x0[0], 0)=TRUE ⇒ 450_0_ACK_GT(0, x0[0])≥NonInfC∧450_0_ACK_GT(0, x0[0])≥COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])∧(UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥))
(31) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(32) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(33) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(34) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(COND_450_0_ACK_GT1(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(450_0_ACK_GT(x1, x2)) = [-1] + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(COND_450_0_ACK_GT(x1, x2, x3)) = [-1] + x3 + [-1]x2
COND_450_0_ACK_GT(TRUE, 0, x0[1]) → 450_0_ACK_GT(1, -(x0[1], 1))
COND_450_0_ACK_GT1(TRUE, x1[4], x0[4]) → 450_0_ACK_GT(-(x1[4], 1), x0[4])
450_0_ACK_GT(x1[2], x0[2]) → COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_450_0_ACK_GT(TRUE, 0, x0[1]) → 450_0_ACK_GT(1, -(x0[1], 1))
450_0_ACK_GT(0, x0[0]) → COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])
COND_450_0_ACK_GT1(TRUE, x1[4], x0[4]) → 450_0_ACK_GT(-(x1[4], 1), x0[4])
450_0_ACK_GT(x1[2], x0[2]) → COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
450_0_ACK_GT(0, x0[0]) → COND_450_0_ACK_GT(>(x0[0], 0), 0, x0[0])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (0), if ((x1[4] - 1 →* 0)∧(x0[4] →* x0[0]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
(1) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(2) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 450_0_ACK_GT(x1[2], x0[2])≥NonInfC∧450_0_ACK_GT(x1[2], x0[2])≥COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(3) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x0[2] + [(2)bni_12]x1[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x0[2] + [(2)bni_12]x1[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]x0[2] + [(2)bni_12]x1[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[2] + [(2)bni_12]x1[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(4)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[2] + [(2)bni_12]x1[2] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[2]1∧x0[4]=x0[2]1 ⇒ COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[4], x0[4])≥450_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(9) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_450_0_ACK_GT1(TRUE, x1[2], x0[2])≥450_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x0[2] + [(2)bni_14]x1[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x0[2] + [(2)bni_14]x1[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x0[2] + [(2)bni_14]x1[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_14 + (2)bni_14] + [bni_14]x0[2] + [(2)bni_14]x1[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(450_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_14 + (3)bni_14] + [bni_14]x0[2] + [(2)bni_14]x1[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(450_0_ACK_GT(x1, x2)) = [1] + x2 + [2]x1
POL(COND_450_0_ACK_GT1(x1, x2, x3)) = x3 + [2]x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
COND_450_0_ACK_GT1(TRUE, x1[4], x0[4]) → 450_0_ACK_GT(-(x1[4], 1), x0[4])
450_0_ACK_GT(x1[2], x0[2]) → COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_450_0_ACK_GT1(TRUE, x1[4], x0[4]) → 450_0_ACK_GT(-(x1[4], 1), x0[4])
450_0_ACK_GT(x1[2], x0[2]) → COND_450_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer